Protein kinase C-dependent NAD(P)H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb.

نویسندگان

  • Jing Yang
  • Pascale H Lane
  • Jennifer S Pollock
  • Pamela K Carmines
چکیده

Type 1 diabetes provokes a protein kinase C (PKC)-dependent accumulation of superoxide anion in the renal medullary thick ascending limb (mTAL). We hypothesized that this phenomenon involves PKC-dependent NAD(P)H oxidase activation. The validity of this hypothesis was explored using mTAL suspensions prepared from rats with streptozotocin-induced diabetes and from sham (vehicle-treated) rats. Superoxide production was 5-fold higher in mTAL suspensions from diabetic rats compared with suspensions from sham rats. The NAD(P)H oxidase inhibitor apocynin caused an 80% decrease in superoxide production by mTAL from diabetic rats (P<0.05 vs untreated) without altering superoxide production by sham mTAL. NAD(P)H oxidase activity was >2-fold higher in mTAL from diabetic rats than in sham mTAL (P<0.05). Pretreatment with calphostin C (broad-spectrum PKC inhibitor) or rottlerin (PKCdelta inhibitor) reduced NAD(P)H oxidase activity by approximately 80% in both groups; however, PKCalpha/beta or PKCbeta inhibition did not alter NAD(P)H oxidase activity in either group. Protein levels of Nox2, Nox4, and p47phox were significantly higher in diabetic mTAL than in mTAL from sham rats. In summary, elevated superoxide production by mTAL from diabetic rats was normalized by NAD(P)H oxidase inhibition. PKC-dependent, PKCdelta-dependent, and total NAD(P)H oxidase activity was greater in mTAL from diabetic rats compared with sham. Protein levels of Nox2, Nox4, and p47phox were increased in mTAL from diabetic rats. We conclude that increased superoxide production by the mTAL during diabetes involves a PKCdelta-dependent increase in NAD(P)H oxidase activity in concert with increased protein levels of catalytic and regulatory subunits of the enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of NAD(P)H oxidase by outward movements of H+ ions in renal medullary thick ascending limb of Henle.

The present study was designed to test the hypothesis that the production of superoxide (O(2)-* by NAD(P)H oxidase is coupled to tubular metabolic activity through ionic activation mediated by H(+) movement across cell membrane. Using dual fluorescent microscopic imaging analysis, intracellular O(2)-* levels and pH (pH(i)) in renal medullary thick ascending limb of Henle (TALH) cells were simul...

متن کامل

NADPH oxidase and PKC contribute to increased Na transport by the thick ascending limb during type 1 diabetes.

Type 1 diabetes triggers protein kinase C (PKC)-dependent NADPH oxidase activation in the renal medullary thick ascending limb (mTAL), resulting in accelerated superoxide production. As acute exposure to superoxide stimulates NaCl transport by the mTAL, we hypothesized that diabetes increases mTAL Na(+) transport through PKC-dependent and NADPH oxidase-dependent mechanisms. An O(2)-sensitive fl...

متن کامل

A novel amiloride-sensitive h+ transport pathway mediates enhanced superoxide production in thick ascending limb of salt-sensitive rats, not na+/h+ exchange.

It has been reported previously that H(+) efflux via the Na(+)/H(+) exchange stimulates NAD(P)H oxidase-dependent superoxide (O(2)(.-)) production in medullary thick ascending limb. We have demonstrated recently that N-methyl-amiloride-sensitive O(2)(.-) production is enhanced in the thick ascending limb of Dahl salt-sensitive (SS) rats, suggesting that H(+) efflux through Na(+)/H(+) exchangers...

متن کامل

Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C.

Abnormal production of superoxide (O(2)(-)) contributes to hypertension, in part because of its effects on the kidney. The thick ascending limb absorbs 20% to 30% of the filtered load of NaCl. O(2)(-) stimulates NaCl absorption by the thick ascending limb by enhancing Na(+)/K(+)/2Cl(-) cotransporter activity; however, the signaling mechanism is unknown. We hypothesized that O(2)(-) stimulates N...

متن کامل

Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats.

Shear stress increases nitric oxide (NO) production by endothelial cells, inner medullary collecting duct cells, and thick ascending limb. We postulated that the osmotic diuresis accompanying type 1 diabetes is associated with increased NO synthase (NOS) activity and/or expression in the renal medulla. Diabetes was induced by injection of streptozotocin, with insulin provided to maintain modera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 2010